Catalog Description

Introduces techniques for developing solutions to business problems using object-oriented programming as an IT resource/tool. Students apply problem solving concepts by analyzing problems and constructing, testing, and implementing object-oriented solutions using object-oriented analysis and design, data modeling, and object-oriented programming fundamentals. Topics include: Unified Modeling Language (UML), classes, inheritance, polymorphism, and exception handling.

Prerequisites

The prerequisites for this course are IT 106 and (IT 102 or MATH 112 or MATH 125). A grade of "C" or better must be achieved in both prerequisite courses before a student is qualified to take this course. Both prerequisite courses must be completed prior to, not concurrently with, this course.

This requirement will be strictly enforced. Any student who does not meet the prerequisite requirements will be dropped from the course by the department at the start of the semester and the student will be responsible for any consequences of being dropped.

Rationale

Problem solving and programming are essential skills for all IT students and IT professionals. Understanding how a computer is instructed to accomplish tasks leads to an appreciation of the underlying concepts of the Information Technology discipline. Learning how to solve a problem using an object-oriented approach provides a strong foundation that will be used in higher level IT courses.

Educational Objective

To introduce students to problem solving using a high-level, object-oriented programming language as a tool.

Course Outcomes

1. Design solutions to problems using object-oriented techniques.
2. Apply techniques of object-oriented programming effectively.
Supported Student Outcomes at the Program Level

(a) Apply knowledge of computing and mathematics
(c) Design, implement and evaluate a computer-based system, process, component, or program
(j) Ability to use and apply current technical concepts and practices in the core information technologies

Major Topics

On successful completion of this course, students will be able to:

- Describe the relationship between an object and its corresponding class.
- Describe how constructors and destructors relate to the life of an object.
- Apply the techniques of structured (functional) decomposition to break a program into smaller pieces.
- Discuss and identify the concepts of encapsulation, abstraction, and inheritance.
- Describe the relationship between the static structure of the class and the dynamic structure of the instances of the class.
- Design, implement, test, and debug programs in an object-oriented programming language.
- Describe how the class mechanism supports encapsulation and information hiding.
- Define the concept of inheritance and describe how it can be applied to encourage code reuse.
- Design an abstract class and use inheritance to create a class that extends the abstract class.
- Compare and contrast the differences between structured and object-oriented programming paradigms.
- Design, implement, and test the implementation of “is-a” relationships among object using a class hierarchy and inheritance.
- Design, develop, and test an application that uses an abstract class.
- Design solutions to problems using object-oriented techniques.
- Create and use simple and complex static data structures in an object-oriented environment.
- Compare and contrast the notions of overloading and overriding methods in an object-oriented language.
- Develop code that responds to exception conditions raised during execution.
- Manage complexity in an information technology environment by applying best practices and using appropriate technologies and methodologies (Unified Modeling Language).
- Apply effective debugging strategies.
Textbooks

REQUIRED

Big Java Late Objects
By: Cay S. Horstmann

Publisher: John Wiley & Sons, Inc.
Publication Date: February 1, 2012
ISBN: 978-1-118-08788-6

RECOMMENDED

If you need a refresher on problem solving or writing pseudocode, this book will help.

By: Lesley Anne Robertson

Publisher: Course Technology
Publication Date: September 29, 2006
ISBN: 978-1-4239-0132-7

Administrative Support

Fairfax Campus
Nguyen Engineering Building, Room 5400
Phone: 703-993-3565

Science and Technology Campus
Bull Run Hall, Suite 102
Phone: 703-993-8461

For a map and directions, visit: http://maps-directions.gmu.edu/
Grading

Grades will be awarded in accordance with the GMU Grading System for undergraduate students. See the university catalog for policies: http://catalog.gmu.edu for more information.

The grading scale for this course is:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>97 – 100%</td>
<td>Passing</td>
</tr>
<tr>
<td>A</td>
<td>93 – 96%</td>
<td>Passing</td>
</tr>
<tr>
<td>A-</td>
<td>90 – 92%</td>
<td>Passing</td>
</tr>
<tr>
<td>B+</td>
<td>87 – 89%</td>
<td>Passing</td>
</tr>
<tr>
<td>B</td>
<td>83 – 86%</td>
<td>Passing</td>
</tr>
<tr>
<td>B-</td>
<td>80 – 82%</td>
<td>Passing</td>
</tr>
<tr>
<td>C+</td>
<td>77 – 79%</td>
<td>Passing</td>
</tr>
<tr>
<td>C</td>
<td>73 – 76%</td>
<td>Passing**</td>
</tr>
<tr>
<td>C-</td>
<td>70 – 72%</td>
<td>Passing**</td>
</tr>
<tr>
<td>D</td>
<td>60 – 69%</td>
<td>Passing**</td>
</tr>
<tr>
<td>F</td>
<td>0 – 59%</td>
<td>Failing</td>
</tr>
</tbody>
</table>

** Grades of “C-“ and “D” are considered passing grades for undergraduate courses; however, a minimum grade of "C" is required in the IST department for any course that is a prerequisite for another course. For IT majors, a grade of “C” or better is required in this course because it is a prerequisite for other courses in the program. For IT minor/undergraduate certificate students, a grade of “D” or higher is required in this course for it to count towards the minor/undergraduate certificate, provided that you will not be taking any other courses for which this course is a prerequisite.

Individual raw scores may be adjusted by the instructor to calculate final grades.

Final grades will be determined based on the following components:

<table>
<thead>
<tr>
<th>Graded Activity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Assessments (lowest 2 dropped)</td>
<td>10%</td>
</tr>
<tr>
<td>Programming Assignments (lowest 1 dropped)</td>
<td>10%</td>
</tr>
<tr>
<td>Lab Exam 1</td>
<td>10%</td>
</tr>
<tr>
<td>Lab Exam 2</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam**</td>
<td>35%</td>
</tr>
</tbody>
</table>

** You must earn a grade of 60% or higher on the final exam to pass the course. Failure to earn a grade of 60% or higher will result in a final grade of “F”, regardless of performance on other graded activities. A low score on the final exam indicates a comprehensive lack of understanding of the
course material. Generally, students who earn a low score on the final exam already do not have high course grades, sufficient to earn a passing grade.

There are no extra credit opportunities. Students may not do any additional work for extra credit nor resubmit any graded activity to raise a final grade.

Late submissions will not be accepted for any graded activity for any reason. All lab assessments and programming assignments must be posted to Blackboard by the due date/time. Neither assignments nor programming assignments may be submitted through any other medium (e.g. email). Any missed graded activity is simply missed, regardless of the reason why (e.g. illness, work, traffic, car trouble, computer problems, death, etc.), and earns a grade of zero. A number of lowest graded activities (as identified above) will be dropped to handle all of “life’s situations” without the need for any type of instructor permission to be excused or for you to submit documentation. If you choose not to do a number of graded activities, and then later on have to miss a graded activity for a valid reason, you will be out of luck if you have already exhausted the number of graded activities that have earned zeroes because you did not complete the work. You are strongly encouraged to complete all graded activities so that you can check your understanding of the material and can throw out bad grades, or grades for which you had to miss a graded activity for a valid reason.

Students have one week to request the re-grading of a graded activity/exam. All requests for the re-grading of a graded activity/exam must be requested to the instructor, in writing (email), within one week of the date grader feedback was posted. In the email request, the student must write a clear explanation of why they believe they should earn more points than were previously earned. **The entire graded activity/exam will be re-graded (i.e. there are no partial re-grades).** It is possible that the resulting grade will be higher due to errors in grading, or lower if it is discovered that a sufficient amount of points were not subtracted the first time. Please carefully consider this before making a request. No requests for re-grading will be considered one week after the date grader feedback was posted and the grade will be considered final.

Exams will be conducted on-campus, in a classroom. All exams are “closed book, closed notes, closed friends” – no reference materials other than those provided with the exam will be permitted. Exams are retained by the IST department and will not be returned to students.

Final grades will be posted to PatriotWeb, which is the only vehicle for students to obtain those grades. A student with a "hold" on his/her PatriotWeb account will be unable to access final grades until the hold has been removed by the Registrar.

Important Dates

Dates for adding, dropping the course, etc. are available via: http://registrar.gmu.edu
Religious Holidays

A list of religious holidays is available on the University Life Calendar page. Any student whose religious observance conflicts with a scheduled course activity must contact the instructor at least 2 weeks in advance of the conflict date in order to make alternate arrangements.

Attendance Policy

Students are expected to attend each class, complete any required preparatory work (including assigned reading) and participate actively in lecture and lab. As members of the academic community, all students are expected to contribute regardless of proficiency with the subject matter. Final grades may be adjusted (upward or downward) by the instructor based on student participation, or lack thereof. Students that fail to attend lecture or lab are unable to participate.

Any student who expects to miss more than one class or lab session is strongly advised to drop the course and take it in a later semester when he/she can attend every class and lab.

Exams

Departmental policy requires students to take exams at the scheduled time and place, unless there are compelling, severe circumstances supported by appropriate documentation. Except in such circumstances, failure to arrive to the exam site on time for a scheduled exam will result in a score of zero (0) for that exam, in accordance with Mason policy on final exams. Excessive area traffic or parking trouble are not valid reasons to arrive late. Students must not make travel plans or other discretionary arrangements that conflict with scheduled classes or the FULL final exam period listed on the Registrar’s Web site. If the University is closed due to weather or other unforeseen conditions, classes or exams may be rescheduled at another day and time during the exam period.

This course uses a block exam format for exams based on the schedule below. All sections will meet simultaneously. Exams MUST be taken at the scheduled time. Mason IDs will be checked. Failure to produce an acceptable Mason ID will result in an inability to complete an exam and a grade of zero.

<table>
<thead>
<tr>
<th></th>
<th>Face to Face Lab Sections</th>
<th>Online Lab Sections</th>
<th>Online Lab Section Makeup**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Exam 1</td>
<td>During lab. Check the course schedule for the exact date</td>
<td>Sat, 7/2, 12:30pm - 1:45pm</td>
<td>Held on a Case-By-Case Basis</td>
</tr>
<tr>
<td>Lab Exam 2</td>
<td></td>
<td>Sat, 7/30, 12:30pm - 1:45pm</td>
<td>Held on a Case-By-Case Basis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>All Sections</th>
<th>Makeup Day**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>Sat, 7/2, 10:00am - 12:00pm</td>
<td>Held on a Case-By-Case Basis</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Sat, 7/30, 10:00am - 12:00pm</td>
<td>Held on a Case-By-Case Basis</td>
</tr>
</tbody>
</table>
** Makeup exams are restricted to students who meet one of the following criteria:
- The University closed due to snow or other unforeseen circumstance on the original exam day
- More than two exams are scheduled on the same day
- Another course or exam is scheduled on the same day at the same time
- A severe, unanticipated, unavoidable, last minute emergency that prevents completion of the exam (with supporting documentation)

Students requiring a makeup exam, including students taking exams with ODS, are required to notify the instructor in writing (email) with **at least two weeks’ advance notice** (the sooner the better). This allows for adequate planning for necessary resources.

Deadlines to place a makeup request, including students taking exams with ODS, are as follows:
- Midterm Exam (All Sections) / Lab Exam 1 (Online Lab Sections) - 6/18/16
- Final Exam (All Sections) / Lab Exam 2 (Online Lab Sections) - 7/16/16

Failure to notify the instructor in writing (email) with at least two weeks’ advance notice will result in denial of the makeup request.

All other reasons for a makeup will be denied. Students have a long lead time in which to plan to attend the exams. Students unable to take exams during their scheduled times should complete the course in a future semester.

Classroom Conduct

Whether the course is face-to-face or online, students are expected to conduct themselves in a manner that is conducive to learning, as directed by the instructor. Any student who negatively impacts the opportunity for other students to learn will be warned – if disruptive behavior continues, the student will be removed from the course.

Communications

Registered students will be given access to a section of the Blackboard Learning System for this course. Blackboard will be used as the primary mechanism to disseminate course information, including announcements, lecture slides, assignments, and grades.

Communication with the instructor on issues relating to the individual student should be conducted using Blackboard mail, GMU email, via telephone, or in person - not in the public discussion board on Blackboard. Federal privacy law and GMU policy require that any communication with a student related in any way to a student’s status be conducted using secure GMU systems – if you use email to communicate with the instructor you **MUST** send messages from your GMU email account.
Privacy

Instructors respect and protect the privacy of information related to individual students. As described above, issues relating to an individual student will be discussed via email, telephone or in person. Instructors will not discuss issues relating to an individual student with other students (or anyone without a need to know) without prior permission of the student.

Graded work other than exams will be returned to individual students directly by the instructor (or by a faculty or staff member or a teaching assistant designated by the instructor or via another secure method). Under no circumstances will a student's graded work be returned to another student.

Faculty and staff will take care to protect the privacy of each student's scores and grades.

Disability Accommodations

The Office of Disability Services (ODS) works with disabled students to arrange for appropriate accommodations to ensure equal access to university services. Any student with a disability of any kind is strongly encouraged to register with ODS as soon as possible and take advantage of the services offered.

Accommodations for disabled students must be made in advance – ODS cannot assist students retroactively, and at least two weeks’ notice is required for special accommodations related to exams. Any student who needs accommodation should contact the instructor during the first week of the semester so the sufficient time is allowed to make arrangements.

Honor Code

All members of the Mason community are expected to uphold the principles of scholarly ethics. Similarly, graduating students are bound by the ethical requirements of the professional communities they join. Ethics requirements for some communities relevant to AIT graduates are:

ACM Code of Ethics and Professional Conduct
IEEE Code of Ethics
EC-Council Code of Ethics

On admission to Mason, students agree to comply with the requirements of the GMU Honor Code and System. The Honor Code will be rigorously enforced in this course. The instructor will use several manual and automated means to detect cheating and/or plagiarism in any work submitted by students for this course, and to direct teaching assistants and/or other faculty and/or staff members to do likewise in support of this course.
WARNING! This course has a zero tolerance policy for violations of the Honor Code. There are no second chances. First offenses carry a minimum recommended sanction of: an assignment grade of 0, one letter grade (10%) reduction in the final grade, and a requirement to complete an academic integrity seminar. Second and third offenses (and egregious first offenses, as determined solely by the instructor/course coordinator) carry stiffer minimum recommended sanctions, including but not limited to: F in the course, academic suspension, and expulsion. Please do not even think about violating the Honor Code. There are many ways to receive help. You are strongly encouraged to use these methods if you are struggling, so that you can get the help you need. If you have any questions about what does/does not constitute an Honor Code violation, please contact your instructor. Additional information on the enforcement of the George Mason University Honor Code policy can be found at: http://oai.gmu.edu.

For this course, the following additional requirements are specified:

- Students may work with other current IT 206 students on assignments. However, students are expressly prohibited from:
 - Obtaining assistance, program design, algorithm logic, or code from individuals other than the course’s instructor, current IT 206 graduate teaching assistants, or current IT 206 students
 - Posting questions or a partial, complete, or graded solution on the Internet.
 - Incorporating program design, algorithm logic, or code found on the Internet.

- All work must be newly created by the individual student for this course for this semester. Any usage of work developed for another course, or for this course in a prior semester, is strictly prohibited without prior approval from the instructor.

- Posting or sharing course content (e.g. instructor provided lecture notes, assignment directions. . . anything not created solely by the student), using any non-electronic or electronic medium (e.g. web site, FTP site, any location where it is accessible to someone other than the individual student, instructor and/or teaching assistant(s)) constitutes copyright infringement and is strictly prohibited without prior approval from the instructor.

If you have any questions on these requirements, please discuss them with your instructor. Any deviation from these requirements is considered a violation. All suspected violations of the Honor Code are required to be taken seriously and reported!