IT 104: Introduction to Computing

Course Syllabus

Course Description

Introduction to Computing (3:1:2) This course, using both lecture and laboratory practice, introduces students to basic computer concepts in hardware, software, networking, computer security, programming, database, e-commerce, decision support systems, and current developments in 3-D printing, virtualization, and Siri-like systems. Additional lectures examine social, legal, ethical issues including privacy, intellectual property, health concerns, green computing, and accessibility. Students learn techniques to search, evaluate, validate, and cite information found online. Hands-on lab includes spreadsheets, databases, presentation, HTML 5, CSS, cybersecurity, blogs, wiki, and mobile app development.

Prerequisites
Knowledge of high school algebra.

Mason Core Course

Information technology and computing can significantly augment humans’ ability to produce, consume, process, and communicate information. Thus, students need to understand ways to use such technology to enhance their lives, careers, and society, while being mindful of challenges such as security, source reliability, automation, and ethical implications. These factors have made it essential for students to understand how to effectively navigate the evolving technological landscape. IT courses offered in the majors may focus on disciplinary applications and concerns of information technology.

IT courses meet the following learning outcomes:

1. Students will understand the principles of information storage, exchange, security, and privacy and be aware of related ethical issues.
2. Students will become critical consumers of digital information; they will be capable of selecting and evaluating appropriate, relevant, and trustworthy sources of information.
3. Students can use appropriate information and computing technologies to organize and analyze information and use it to guide decision-making.
4. Students will be able to choose and apply appropriate algorithmic methods to solve a problem.

Objectives

After successful completion of the course, the students will be able to –

- Understand basic functions of computer hardware and software components including operating system functions
- Identify various networks (LAN, WAN, intranet), topologies (ring, bus, star), protocols (TCP/IP, SMTP, POP & IMAP, HTTP & HTTPS, DNS), media types (wire pair, coaxial cable, fiber optics, microwave, radio frequency, infra-red), and network hardware (router, hub, gateway)
- Know how to use search techniques (inclusion, exclusion, wildcards, phrase, Boolean search), evaluate the information found on Web pages (chat rooms, newsgroups, RSS, podcasting sites, Wikipedia, blogs), and cite electronic and printed references
- Understand computer viruses, biometric devices, encryption technique, digital signature, email filtering, firewall, and precautions on Web
- Understand ethical issues regarding copyright, software licenses, information privacy, intellectual property, content filtering, Spam, and laws enacted with regards to SPAM, children’s protection on Web, electronic communication, and electronic theft
- Understand IT impact on society (health and environment)
- Design and create web pages using HTML 5
- Know data visualization techniques
- Learn to write small programs using Java programming language
- Use different application programs like spreadsheet and database management systems
- Understand the fundamentals of system analysis, life cycle of a program development and programming languages, artificial intelligence, and e-commerce.

Credit by Examination

Students who think they already know the material in IT 104 should read the information on Credit by Examination posted on http://ist.gmu.edu/students/current-students/course-credit-waiver-options/ web site.
Textbooks
There are two required textbooks for the course.

Grading
Grades will be awarded in accordance with the GMU Grading System for undergraduate students. See https://catalog.gmu.edu/policies/academic/grading/#text under Grading System for more information.

The grading scale for this course is:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>97 – 100%</td>
<td>Passing</td>
</tr>
<tr>
<td>A</td>
<td>93 – 96%</td>
<td>Passing</td>
</tr>
<tr>
<td>A-</td>
<td>90 – 92%</td>
<td>Passing</td>
</tr>
<tr>
<td>B+</td>
<td>87 – 89%</td>
<td>Passing</td>
</tr>
<tr>
<td>B</td>
<td>83 – 86%</td>
<td>Passing</td>
</tr>
<tr>
<td>B-</td>
<td>80 – 82%</td>
<td>Passing</td>
</tr>
<tr>
<td>C+</td>
<td>77 – 79%</td>
<td>Passing</td>
</tr>
<tr>
<td>C</td>
<td>73 – 76%</td>
<td>Passing</td>
</tr>
<tr>
<td>C-</td>
<td>70 – 72%</td>
<td>Passing*</td>
</tr>
<tr>
<td>D</td>
<td>60 – 69%</td>
<td>Passing*</td>
</tr>
<tr>
<td>F</td>
<td>0 – 59%</td>
<td>Failing</td>
</tr>
</tbody>
</table>

* Grades of "C-" and "D" are considered passing grades for undergraduate courses. However, a minimum grade of "C" is required in the BSIT program for any course that is a prerequisite for one or more other courses. This course is a prerequisite for several courses in BSIT program – see https://catalog.gmu.edu/colleges-schools/engineering/information-sciences-technology/information-technology-bs/#admissionspolicies for more information on those courses.

Raw scores may be adjusted by the Instructor to calculate final grades.
Final grades will be determined based on the following components:

<table>
<thead>
<tr>
<th>Item</th>
<th>Points</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class Exercises</td>
<td>50</td>
<td>5%</td>
</tr>
<tr>
<td>Project Part I (Research Paper)</td>
<td>150</td>
<td>15%</td>
</tr>
<tr>
<td>Project Part II (Web site)</td>
<td>150</td>
<td>15%</td>
</tr>
<tr>
<td>Discussion Posts</td>
<td>50</td>
<td>5%</td>
</tr>
<tr>
<td>Lab Exercises and Homework Assignments</td>
<td>150</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm Practice Test (conducted in lab)</td>
<td>25</td>
<td>2.5%</td>
</tr>
<tr>
<td>Final Practice Test (conducted in lab)</td>
<td>25</td>
<td>2.5%</td>
</tr>
<tr>
<td>Midterm Exam (conducted in lab)</td>
<td>200</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam (conducted in lab)</td>
<td>200</td>
<td>20%</td>
</tr>
<tr>
<td>Total Points</td>
<td>1000</td>
<td>100%</td>
</tr>
</tbody>
</table>

Students are responsible for checking the currency of their grade books. Grade discrepancies must be brought to instructor’s attention within one week of assignment submission and 48 hours of exam submission.

Grading components are outlined in the following sections.

In-class Exercises
There will be seven (7) in-class exercises with the two (2) lowest grades being eliminated. Thus, only five (5) in-class exercises count in the overall grade for the course. In-classes are not announced and can be given in lecture class or in lab, at the beginning of the class or towards the end. **No makeups for any missed in-class exercises for any reason.**

Course Discussions
There will be five required course discussions throughout the semester. Each discussion is worth 10 points. **You are expected to put up your original post first and then respond to two other posts with a constructive feedback.**

Project Part I and II
See the project folder in the lecture Blackboard folder for details.

Lab Schedule
Lab assignments and their due dates are contained in the lab syllabus posted on lab Blackboard folder.

Midterm and Final Practice Tests
Midterm and final practice tests are conducted in lab. Their dates are included in the lab Blackboard folder. **Attendance in both practice tests is mandatory.**
Exams (midterm and final)
Both midterm and final exams are “closed book”. Exams are conducted in lab. You must bring your valid GMU ID to lab on the scheduled exam dates.

No makeups for missed exams for any reason.

Final grades will be posted to Patriot Web, which is the only way for students to obtain those grades. A student with a "hold" on his/her Patriot Web account will be unable to access final grades until the Registrar has removed the hold.

Bonus Points

From time to time, there are bonus opportunities offered in class. Your instructor may ask a question anytime during class. The question could be from current or previous concepts discussed in class or from the reading assigned every week. If you know the answer, you will raise your hand and your instructor will determine whom to offer the opportunity. If answered correctly, your instructor will give you a reward which you can redeem in lab. A few examples of rewards are - an extension on a lab assignment, a waiver from a discussion board participation, extra point towards your exam, etc. The key is to remain prepared to participate as often as you can!

Even though we encourage class participation at all times, however, you can earn rewards for participation only two times before the midterm exam and two times after the midterm exam – up to four (4) times in a semester.

Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture/Topic</th>
<th>Lecture Reading Assignment (Steinberg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to the course</td>
<td>Research paper specifications posted under Project’s folder</td>
</tr>
<tr>
<td></td>
<td>Project part I: Research Paper review</td>
<td>Chapter 1</td>
</tr>
<tr>
<td></td>
<td>Information Systems</td>
<td>InfoGuides http://infoguides.gmu.edu/IT104</td>
</tr>
<tr>
<td></td>
<td>Library and Internet Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>World Wide Web</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hardware</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>3</td>
<td>Software</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>4</td>
<td>Internet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Communications and Networking</td>
<td>Chapter 2 & 5</td>
</tr>
</tbody>
</table>
| 5 | **Project Part I: Research Paper Due**
System Analysis
Midterm Exam Review | Chapter 6
Review Sheet posted on Blackboard |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Midterm Exam</td>
</tr>
</tbody>
</table>
| 7 | **HTML 5**
Project part II: Website review | Chapter 9 |
| 8 | CSS and JavaScript | Chapter 10 |
| 9 | Computer Programming | Chapter 7 |
| 10 | Database and SQL | Chapter 8 |
| 11 | E-commerce
Mobile and Cloud Computing
Project Part II: Website Due | Chapter 11
Chapter 12 |
| 12 | Security, Ethics, and Privacy | Chapter 13 |
| 13 | DSS, Artificial Intelligence, Data Mining, Data Management
Impact of Computing on Society | Chapter 14
Chapter 15 |
| 14 | Future of Computing: SIRI Like Systems, 3D Printing, Virtualization
Final Exam – Review | Chapter 16
Chapter Review Sheet posted on Blackboard |
| 15 | **Final Exam (Check Blackboard announcement area for final exam schedule)** |

The reading assignment shown for each lecture is to be completed prior to that lecture.

This schedule is subject to revision before and throughout the course.

Important Dates

Spring 2019 semester calendar is available on the Office of the University Registrar’s web site.

Religious Holidays
A list of religious holidays is available on the University Life Calendar page. Any student whose religious observance conflicts with a scheduled course activity must contact the Instructor at least 2 weeks in advance of the conflict date in order to make alternative arrangements.

Attendance Policy
Students are expected to attend each class, to complete any required preparatory work, and to participate actively in lectures, discussions and exercises. As members of the academic community, all students are expected to contribute regardless of their proficiency with the subject matter.

Students are expected to make prior arrangements with Instructor if they know in advance that they will miss any class and to consult with the Instructor as soon as possible if they miss any class without prior notice. Any student who expects to miss more than two class sessions is strongly advised to drop the course and take it in a later semester when he/she can attend every class.

Departmental policy requires students to take exams at the scheduled time and place, unless there are truly compelling circumstances supported by appropriate documentation. Except in such circumstances, failure to attend a scheduled exam will result in a score of zero (0) for that exam, in accordance with Mason policy on final exams. Students should not make travel plans or other discretionary arrangements that conflict with scheduled classes and/or exams. If the University is closed due to weather or other unforeseen conditions, final exams may be rescheduled – students are strongly advised not to make plans that would prevent them from attending exams that may be rescheduled during the entire exam period.

Classroom Conduct
Students are expected to conduct themselves in a manner that is conducive to learning, as directed by the Instructor. Any student who negatively impacts the opportunity for other students to learn will be warned – if disruptive behavior continues, the student will be asked to leave the classroom.

Communications
GMU e-mail is the preferred method of communication.

Students must use their MasonLive email account to receive important University information, including messages related to this class. Federal privacy law and GMU policy require that any communication with a student related in any way to a student's status be conducted using secure GMU systems.

Privacy
Instructors respect and protect the privacy of information related to individual students. Instructors will take every possible measure to protect the privacy of each student's submissions, scores and grades.
Disability Accommodations
Any student with a disability of any kind is strongly encouraged to register with The Office of Disability Services (ODS) (703.993.2474) as soon as possible and take advantage of the services offered.

Accommodations for disabled students must be made in advance – ODS cannot assist students retroactively, and at least one week's notice is required for special accommodations related to exams. Any student who needs accommodation should contact the Instructor during the first week of the semester so the sufficient time is allowed to make arrangements.

Honor Code
All members of the Mason community are expected to uphold the principles of scholarly ethics. The GMU Honor System and Code will be strictly enforced in this course. Any use of the words or ideas of another person(s) without explicit attribution that clearly identifies the material used and its source in an appropriate manner is plagiarism and will not be tolerated.

Blackboard’s SafeAssign tool is used to detect plagiarism in any work submitted by students for this course.

For this course, the following requirements are specified:

All assessable work is to be prepared by the individual student, unless the Instructor explicitly directs otherwise.

The individual student for this course must newly create all work for this semester. Any usage of work developed for another course, or for this course in a prior semester, is strictly prohibited without prior approval from the instructor.

Students may seek assistance with assigned work (and are encouraged to do so if they feel the need), provided the directions for the assigned work do not prohibit such assistance and assistance is acknowledged in the submitted work, clearly identifying the person(s) giving assistance and the nature of the assistance given.

Available Resources

VSE Peer Mentoring: Peer mentoring, https://volgenau.gmu.edu/about/current-student-resources/find-tutor

WRITING CENTER: A114 Robinson Hall; (703) 993-1200; http://writingcenter.gmu.edu

UNIVERSITY LIBRARIES “Ask a Librarian” http://library.gmu.edu/ask

COUNSELING AND PSYCHOLOGICAL SERVICES (CAPS): (703) 993-2380; http://caps.gmu.edu

INFOGUIDES: http://infoguides.gmu.edu/it104