Department of Information Sciences and Technology

IT 214: Database Fundamentals

Course Syllabus

Spring 2019

This syllabus contains information common to all sections of IT 214 except section 002 for the Spring 2019 semester. For each section, a customized syllabus with information specific to that section will be made available to registered students via the Blackboard Learning System.

Logistics

Detailed information on all IT 214 sections offered in the Spring 2019 semester including the day, time, location, instructors’ names and their contact information is available through the Schedule of Classes posted on PatriotWeb.

Course Description

<table>
<thead>
<tr>
<th>IT 214 Database Fundamentals (3:3:0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 103 or CS 112</td>
</tr>
</tbody>
</table>

Covers fundamentals of relational database management systems and their use in business environments. Topics include: database classifications, data models with extensive coverage of the relational model, entity-relationship and extended entity-relationship models, normalization, advanced data modeling, and Structured Query Language (SQL) programming. Students design and implement a real-world relational database and create complex SQL queries to retrieve data from the database.

From http://catalog.gmu.edu/
Prerequisites

The prerequisite for this course is IT 103 or CS 112. A grade of "C" or better must be achieved in the prerequisite courses before a student is qualified to take this course. The prerequisite courses must be completed prior to, not concurrently with, this course.

This requirement will be strictly enforced. Any student who does not meet the prerequisite requirement will be dropped from the course by the Instructor at the start of the semester and the student will be responsible for any consequences of being dropped.

Rationale

For many businesses, processing information is the key component of their corporate strategy and crucial to their profitability. Databases provide a convenient means of storing large amounts of data, allowing it to be sorted, searched, viewed, and manipulated according to the business needs and goals. Many companies rely so heavily on the functions of databases that their daily business operations cannot be executed if databases are unavailable, making database management and maintenance a vital component of their business models. This course is intended to develop understanding of database fundamentals, introduce students to currently available technologies and tools, and examine typical applications of those technologies to real-world situations.

Student Outcomes

On successful completion of this course, students will be able to:

- Use modern techniques of data organization and access in a database environment
- Describe the importance of database modeling and design
- Understand and work with the relational database model and ERD
- Design and create multiple tables, table relationships, and queries using SQL
- Understand what transaction management and concurrency control are
- Have solid understanding of different types of databases

List Of Topics

- Database Systems, Data Models, Introduction to Visio
- Relational Database Model
- Basic ERD and Relational Diagram in Visio
- Entity-Relationship Model
- Crow’s Foot Diagram in Visio
- Normalization
- Dependency Diagrams
- Advanced Data Modeling Techniques
- Review on Database Design
- Introduction to SQL
- Data Definition Language
- DML: Single-Table Queries
- DML: Multiple-Table Queries
- Updating Data
References

Textbook

There is one required textbook for this course listed below. It is a special GMU edition of the textbook. You can purchase it at the GMU Bookstore at http://gmubncollege.com/

Database Systems: Design, Implementation, and Management with Guide to MySQL, Special Edition for George Mason University, by Pratt, Last, Rob and Coronel
ISBN-10: 1111723990
Format: Paper
Publisher: Thomson Course Technology, 2010
Publisher’s web-site:
www.cengage.com

The special GMU edition of the textbook listed above was created from two different textbooks:

 ISBN-10: 0538748842
 9th edition

- *A Guide to MySQL* textbook by P. Pratt, M. Last
 ISBN-10: 1418836354
 1st edition

You can purchase two books that are used for the special GMU edition separately. If you do choose to acquire your textbooks separately, please triple check the ISBN numbers so that you are obtaining the right textbooks and the right editions of the textbooks. You are responsible for obtaining the correct textbooks for the course.
Faculty and Staff

IT 214 Course Coordinator:

Mihai Boicu, Ph.D.
Email: mboicu@gmu.edu
Office hours: By email appointment only

See the Blackboard site for details related to the instructor and GTA associated with your section.

Administrative Support

Fairfax campus
Engineering Building, 5400
Phone: 703-993-3565

Grading

Grades will be awarded in accordance with the Mason Grading System for undergraduate students. See the university catalog for policies: http://catalog.gmu.edu for more information.

The grading scale for this course is:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>97 – 100%</td>
<td>Passing</td>
</tr>
<tr>
<td>A</td>
<td>93 – 96%</td>
<td>Passing</td>
</tr>
<tr>
<td>A-</td>
<td>90 – 92%</td>
<td>Passing</td>
</tr>
<tr>
<td>B+</td>
<td>87 – 89%</td>
<td>Passing</td>
</tr>
<tr>
<td>B</td>
<td>83 – 86%</td>
<td>Passing</td>
</tr>
<tr>
<td>B-</td>
<td>80 – 82%</td>
<td>Passing</td>
</tr>
<tr>
<td>C+</td>
<td>77 – 79%</td>
<td>Passing</td>
</tr>
<tr>
<td>C</td>
<td>73 – 76%</td>
<td>Passing</td>
</tr>
<tr>
<td>C-</td>
<td>70 – 72%</td>
<td>Passing*</td>
</tr>
<tr>
<td>D</td>
<td>60 – 69%</td>
<td>Passing*</td>
</tr>
<tr>
<td>F</td>
<td>0 – 59%</td>
<td>Failing</td>
</tr>
</tbody>
</table>

* Grades of "C-" and "D" are considered passing grades for undergraduate courses. However, a minimum grade of "C" is required in the BSIT program for any course that is a prerequisite for one or more other courses. This course is a prerequisite for several courses in BSIT Concentrations – see http://www.gmu.edu/catalog/courses/it.html for more information on those courses.

Raw scores may be adjusted by the Instructor to calculate final grades.

Students are responsible for checking the currency of their grade books. Grade discrepancies must be brought to instructor’s attention within one week of assignment submission and 48 hours of exam submission.

Final grades will be determined based on the following components:
These components are outlined in the following sections.

Quizzes
Quizzes will be assigned every week during the first five classes of the course. Each quiz is to be prepared and submitted as specified by the Instructor.

Homework Assignments
Homework will be assigned every class during the semester. Each homework assignment is to be prepared and submitted as specified by the Instructor. Late homework may not be accepted – if accepted, a penalty may be applied. Acceptance of late homework and/or application of penalties will be at the sole discretion of the Instructor.

In-class exercises
In-class exercises may be conducted in selected class sessions throughout the semester and may be used to earn extra-credit for the exams. Exercises will **not** be announced in advance. Any student who misses an exercise due to an unexcused absence will receive zero (0) for that exercise.

Weekly Activities and Research Assignments
Weekly activities and research assignments will be assigned in selected classes throughout the semester.

Project
Each student individually will prepare and submit a project in accordance with requirements to be discussed in class and published on the Blackboard Learning System. Late projects may not be accepted – if accepted, a penalty may be applied. Acceptance of late projects and/or application of penalties will be at the sole discretion of the Instructor.

Extra-credit
Students can earn extra-credit by giving an in-class presentation on selected database topics. Topics must be discussed with and approved by the instructor in advance.
Mid-term exams: Test 1 and Test 2
Test 1 will be conducted during the scheduled class session 6 and will be based on topics addressed in Classes 1-5. Test 2 will be conducted during the scheduled class session 11 and will be based on topics addressed in Classes 7-10. Both Test 1 and Test 2 will be “closed book, closed notes” – no reference materials other than those provided with the exam paper will be permitted.

NET Session: The Mid-term exams will NOT be online. It would be taken in person in class. Proof of ID required. The location and time of the exams would be announced during the semester. If the student cannot attend the exam due to schedule conflicts, he/she may take the exam during the same week at Fairfax Campus at a date and time established by the instructor.

Final exam
The final exam will be held during the scheduled final exam session (see http://registrar.gmu.edu) and will be based on topics addressed throughout the entire course. The final exam will be “closed book, closed notes” – no reference materials other than those provided with the exam paper will be permitted. Final exams will be retained by the Department of Information Sciences and Technology and will not be returned to students.

NET Session: The midterm exam and the final exam will NOT be online. Exams will be held during the scheduled exam sessions. It would be taken in person in class. Proof of ID is required. The location and time of the exams would be announced during the semester. If the student cannot attend an exam due to schedule conflicts, he must contact the instructor in advance to schedule an alternative date and time for the exam.

No make-up for any activity including exams, unless arranged in advance. Only in special cases, such as medical problems and family emergency, make-ups and late assignments may be allowed with verifiable proof. Arrive promptly to exams. Late students may not be admitted.

Final grades will be posted to PatriotWeb, which is the only vehicle for students to obtain those grades. A student with a "hold" on his/her PatriotWeb account will be unable to access final grades until the hold has been removed by the Registrar.

Schedule
A detailed schedule will be published on Blackboard. As many factors may affect the development and progress of a class, the instructor reserves the right to alter the schedule as may be required to assure attainment of course objectives. The schedule is subject to revision before and throughout the course.

Registered students should see the Blackboard Learning System for the latest class schedule.
Important Dates

Dates for dropping, adding the course etc. are available via http://registrar.gmu.edu/calendars/

Religious Holidays

A list of religious holidays is available on the [University Life Calendar](http://registrar.gmu.edu/calendars/) page. Any student whose religious observance conflicts with a scheduled course activity must contact the Instructor at least 2 weeks in advance of the conflict date in order to make alternative arrangements.

Attendance Policy

Students in in-class sections are expected to attend each class, to complete any required preparatory work and to participate actively in lectures, discussions and exercises. As members of the academic community, all students are expected to contribute regardless of their proficiency with the subject matter.

Students are expected to make prior arrangements with Instructor if they know in advance that they will miss any class and to consult with the Instructor as soon as possible if they miss any class without prior notice. Any student who expects to miss more than one class session is strongly advised to drop the course and take it in a later semester when he/she can attend every class.

Departmental policy requires students to take exams at the scheduled time and place, unless there are truly compelling circumstances supported by appropriate documentation. Except in such circumstances, failure to attend a scheduled exam will result in a score of zero (0) for that exam, in accordance with [Mason policy on final exams](http://registrar.gmu.edu/calendars/). Students should not make travel plans or other discretionary arrangements that conflict with scheduled classes and/or exams. If the University is closed due to weather or other unforeseen conditions, final exams may be rescheduled – students are strongly advised not to make plans that would prevent them from attending exams that may be rescheduled during the entire exam period.

NET Version attendance: During each week the students must perform all the requirements published for that week. A detailed week-by-week schedule of classes will be published on the net version of the course.

Classroom conduct

Students are expected to conduct themselves in a manner that is conducive to learning, as directed by the Instructor. Any student who negatively impacts the opportunity for other students to learn will be warned – if disruptive behavior continues, the student will be asked to leave the classroom.

Electronic devices are potential distractions in the classroom environment. Cell phones, pagers and other handheld devices must be turned off or set to "silent" mode and not used while class is in session. Laptop computers and similar devices may be used only if such use is directly related to the classroom activity in progress – for some activities the Instructor may require that such devices not be used in order to maximize student engagement.
Communications

Registered students will be given access to a section of the Blackboard Learning System for this course. Blackboard will be used as the primary mechanism (outside of lectures) to disseminate course information, including announcements, lecture slides, homework and other assignments, and scores for homework and exams.

Communication with the Instructor on issues relating to the individual student should be conducted using Mason email, via telephone, or in person - not in the public forums on Blackboard. Mason Mail is the preferred method – for urgent messages, you should also attempt to contact the Instructor via telephone. Federal privacy law and Mason policy require that any communication with a student related in any way to a student's status be conducted using secure Mason systems – if you use email to communicate with the Instructor you MUST send messages from your Mason email account.

When sending an e-mail to the instructor, please include the following:

- Course number
- Section number
- Your full name

Privacy

Instructors respect and protect the privacy of information related to individual students.

As described above, issues relating to an individual student will discussed via email, telephone or in person. Instructors will not discuss issues relating to an individual student with other students (or anyone without a need to know) without prior permission of the student.

Assessable work other than final exams will be returned to individual students directly by the Instructor (or by a faculty or staff member or a Teaching Assistant designated by the Instructor, or via another secure method). Under no circumstances will a student's graded work be returned to another student.

Faculty and staff will take care to protect the privacy of each student's scores and grades.

Disability Accommodations

The Office of Disability Services (ODS) works with disabled students to arrange for appropriate accommodations to ensure equal access to university services. Any student with a disability of any kind is strongly encouraged to register with ODS as soon as possible and take advantage of the services offered.

Accommodations for disabled students must be made in advance – ODS cannot assist students retroactively, and at least one week's notice is required for special accommodations related to exams. Any student who needs accommodation should contact the Instructor during the first week of the semester so the sufficient time is allowed to make arrangements.

Honor Code
All members of the Mason community are expected to uphold the principles of scholarly ethics. Similarly, graduating students are bound by the ethical requirements of the professional communities they join. The ethics requirements for some of the communities relevant to IST graduates are available via the following links:

- ACM Code of Ethics and Professional Conduct
- IEEE Code of Ethics
- EC-Council Code of Ethics

On admission to George Mason University, students agree to comply with the requirements of the Mason Honor System and Code. The Honor Code will be strictly enforced in this course. Honor Code cases are heard by a panel consisting of students – students who meet the requirements are encouraged to nominate themselves to serve on the Honor Committee.

Any use of the words or ideas of another person(s), without explicit attribution that clearly identifies the material used and its source in an appropriate manner, is plagiarism and will not be tolerated. The Instructor reserves the right to use manual and/or automated means (including such services as SafeAssign.com) to detect plagiarism in any work submitted by students for this course, and to direct Teaching Assistants and/or other faculty and/or staff members to do likewise in support of this course.

For this course, the following requirements are specified:

- All assessable work is to be prepared by the individual student, unless the Instructor explicitly directs otherwise.
- All work must be newly created by the individual student for this course for this semester. Any usage of work developed for another course, or for this course in a prior semester, is strictly prohibited without prior approval from the instructor.

Students may seek assistance with assigned work (and are encouraged to do so if they feel the need), provided:

- The directions for the assigned work do not prohibit such assistance.
- Such assistance is acknowledged in the submitted work, clearly identifying the person(s) giving assistance and the nature of the assistance given.
- Any work to be submitted is prepared entirely an exclusively by the student submitting it. Students are expressly prohibited from sharing any assessable work for this course in any manner with other students (except students assigned as Teaching Assistants or Undergraduate Peer Mentors to this course and the student's section), unless all students involved have had their work graded and returned by the Instructor, or the Instructor has explicitly approved such sharing.

NET Sections only:

For the net section you will need to have the following additional resources:
- Computer with fast internet connection
- Microphone and web camera (optional)
This syllabus is applicable only to IT214 Section 002. All the other sections must refer to the general syllabus.

Catalog Description:
Covers fundamentals of relational database management systems and their use in business environments. Topics include: database classifications, data models with extensive coverage of the relational model, entity-relationship and extended entity-relationship models, normalization, advanced data modeling, and Structured Query Language (SQL) programming. Students design and implement a real-world relational database and create complex SQL queries to retrieve data from the database.

Expected outcomes:
- Students understand and describe the database lifecycle and representative tools and methods involved.
- Students understand, develop, and analyze relational database models.
- Students understand and apply database model normalization.
- Students understand and describe the role and main elements of the Structured Query Language (SQL).
- Students understand, develop, and analyze SQL commands to create, update, and query a database.
- Students develop a small database based on real-world examples, by creating a model, implementing the model using SQL, populating the model with data and querying the model in a meaningful way.

Prerequisites:
IT103/IT104/CS112 with a minimal grade of C. Database knowledge taught in IT104 is required.

Sections
This syllabus is applicable only to Section 002

Instructor and Course Coordinator
Dr. Mihai Boicu, Ph.D. - Phone: 703 993 1591
Email: mboicu@gmu.edu (start email subject with IT214-002)
GTA Information will be published on Blackboard
Recommended Textbook

The following is the current recommended textbook, it is a special GMU edition of the textbook. You can purchase it at the GMU Bookstore at http://gmu.bncollege.com/

```
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ISBN-10: 1111723990</td>
</tr>
<tr>
<td>Format: Paper</td>
</tr>
<tr>
<td>Publisher: Thomson Course Technology, 2010</td>
</tr>
<tr>
<td>Publisher’s web-site:</td>
</tr>
<tr>
<td><a href="http://www.cengage.com">www.cengage.com</a></td>
</tr>
</tbody>
</table>
```

The special GMU edition of the textbook listed above was created from two different textbooks:

 | ISBN-10: 0538748842 |
 | 9th edition |

- *A Guide to MySQL* textbook by P. Pratt, M. Last

 | ISBN-10: 1418836354 |
 | 1st edition |

You can purchase two books that are used for the special GMU edition separately. If you do choose to acquire your textbooks separately, please triple check the ISBN numbers so that you are obtaining the right textbooks and the right editions of the textbooks. **You are responsible for obtaining the correct textbooks for the course.**

Additional readings, tutorials and online materials will be recommended during the course.

For this section only, the textbook is not required. However, it is strongly recommended, mostly if you need a structured presentation of the material and you are less of a web-learner.
Schedule (may be modified by the instructor)

<table>
<thead>
<tr>
<th>Module</th>
<th>Week</th>
<th>Section</th>
<th>Quiz</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Design</td>
<td>1</td>
<td>D1. Simple designs with one and two entities</td>
<td>Q1 (Prereq IT104)</td>
<td>Activity D1, Homework D1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>D2. Entities and relationships</td>
<td>Q2 (D1)</td>
<td>Activity D2, Homework D2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>D3. Hierarchies (EERD)</td>
<td>Q3 (D1-D2)</td>
<td>Activity D3, Homework D3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>D4. Normalization and denormalization</td>
<td>Q4 (D1-D3)</td>
<td>Activity D4, Homework D4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>D5. Design principles</td>
<td>Q5(D1-D4)</td>
<td>Activity D5, Homework D5</td>
</tr>
<tr>
<td>SQL</td>
<td>6</td>
<td>S1. DDL Creating tables, manage data, simple queries</td>
<td>Q6 (D1-5; IT104)</td>
<td>Activity S1, Homework S1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>S2. Single table queries. Sorting</td>
<td>Q7 (D1-5; S1)</td>
<td>Activity S2, Homework S2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>S3. Multiple table queries</td>
<td>Q8 (D1-5; S1-2)</td>
<td>Activity S2, Homework S2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>S4. Subqueries</td>
<td>Q9 (D1-5; S1-3)</td>
<td>Activity S2, Homework S2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>S5. Grouping</td>
<td>Q10 (D1-5; S1-4)</td>
<td>Activity S2, Homework S2</td>
</tr>
<tr>
<td>Database Project</td>
<td>11</td>
<td>P1. Database requirements</td>
<td>Q11 (D1-5; S1-5)</td>
<td>Activity P1, Project requirements</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>P2. Database design</td>
<td>Q12 (D1-5; S1-5, P1)</td>
<td>Activity P2, Project design</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>P3. Database development</td>
<td>Q13 (D1-5; S1-5, P1-2)</td>
<td>Activity P3, Project implementation</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>P4. Database use</td>
<td>Q14 (D1-5; S1-5, P1-3)</td>
<td>Activity P4, Project queries</td>
</tr>
<tr>
<td>Final exam</td>
<td>15</td>
<td>Cumulative exam (all sections)</td>
<td>(D1-5, S1-5, P1-4)</td>
<td>Week 15 (Final exam based on the university schedule)</td>
</tr>
</tbody>
</table>

Note: The schedule may be changed during the semester to accommodate specific class needs. All changes will be posted on the Blackboard and communicated by email.

The following modules will be provided for extra-credit:

- Career module
- Research module
- Entrepreneurship module
Grading:

The students will be assigned a grade based on a weekly portfolio. Each module is graded independently.

- **MODULE: Database design (30% = 5 sections x 6% each)**
 - In class quiz (4%)
 - Activity (0.5%)
 - Homework (1.5%)
- **MODULE: Database implementation in SQL (30% = 5 sections x 6% each)**
 - In class quiz (4%)
 - Activity (0.5%)
 - Homework (1.5%)
- **MODULE: Project (20% = 4 sections x 5% each)**
 - Project (4%)
 - In class quiz (0.5%)
 - Activity (0.5%)
- **FINAL EXAM (20%)**
- Additional bonus points might be provided during class for participation, extra assignments, extra curriculum activities, enrichment activities at the discretion of the instructor

The grading scale for this course is:

<table>
<thead>
<tr>
<th>Numeric Grade</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>97 – 100%</td>
<td>A+</td>
</tr>
<tr>
<td>93 – 96%</td>
<td>A</td>
</tr>
<tr>
<td>90 – 92%</td>
<td>A−</td>
</tr>
<tr>
<td>87 – 89%</td>
<td>B+</td>
</tr>
<tr>
<td>83 – 86%</td>
<td>B</td>
</tr>
<tr>
<td>80 – 82%</td>
<td>B−</td>
</tr>
<tr>
<td>77 – 79%</td>
<td>C+</td>
</tr>
<tr>
<td>73 – 76%</td>
<td>C</td>
</tr>
<tr>
<td>70 – 72%</td>
<td>C−</td>
</tr>
<tr>
<td>60 – 69%</td>
<td>D</td>
</tr>
<tr>
<td>0 – 59%</td>
<td>F</td>
</tr>
</tbody>
</table>
Hardware and Software requirements

For all sections you must have a personal computer with internet connection. It is strongly recommended that you have a powerful enough laptop on which you can perform code development that you can bring to class.

For the online section you must have a personal computer with internet connection, with speakers and microphone.

We require either a Mac OS X or Windows 10 computer.

Course Delivery Methods

The course will be delivered using various methods. You must have your MASON email account activated and you must check your email daily for announcements related to the course. You must have access to Blackboard Learning System and to know how to use its features.

There are video presentations posted on the Blackboard. You must have an environment in which you can watch these videos.

You will have several assignments and assessments to be performed each week. A summary of weekly requirements will be sent at the beginning of the week.

COURSE CANCELED (SNOW DAYS)

If the courses are canceled the first option is to have a synchronous meeting online during the same times. If you cannot be online the course will be recorded and posted on the course Blackboard site.

Exams

There are two main exams (midterm and final). The exams must be taken in class at the schedule date. For online sections the exam may be taken also in a pre-approved testing center. Exceptions must be well documented and approved based on MASON exams guidelines.

Intellectual Property

There is a strong recommendation that all work in the class projects to be done based on an open source license (e.g. Academic Free License http://en.wikipedia.org/wiki/Academic_Free_License). This will allow a rich, shared exchange of ideas and will allow each member of the class to further benefit with no restriction from the work performed in the class.

Privacy

Instructors respect and protect the privacy of information related to individual students. Specific issues relating to an individual student will be discussed via email, telephone or in person. Instructors will not discuss issues relating to an individual student with other students (or anyone without a need to know) without prior permission of the student. There is no guarantee related to the security of email and telephone conversations.
Assessable work other than final exams will be returned to individual students directly by the Instructor (or by a faculty or staff member or a Teaching Assistant designated by the Instructor, or via another secure method). Under no circumstances will a student's graded work be returned to another student.

Faculty and staff will take care to protect the privacy of each student's scores and grades.

Because of the nature of this class, some work performed by the student will be published and discussed in the class. Other students will be able to make comments and suggestions related to the published work, without seeing the actual grade the student earned for the work.

Disability Accommodations

The Office of Disability Services (ODS) works with disabled students to arrange for appropriate accommodations to ensure equal access to university services. Any student with a disability of any kind is strongly encouraged to register with ODS as soon as possible and take advantage of the services offered.

Accommodations for disabled students must be made in advance – ODS cannot assist students retroactively, and at least one week's notice is required for special accommodations related to exams. Any student who needs accommodation should contact the Instructor during the first week of the semester so the sufficient time is allowed to make arrangements.

Honor Code

All members of the Mason community are expected to uphold the principles of scholarly ethics. Similarly, graduating students are bound by the ethical requirements of the professional communities they join. The ethics requirements for some of the communities relevant to Applied IT graduates are available via the following links:

- ACM Code of Ethics and Professional Conduct
- IEEE Code of Ethics
- EC-Council Code of Ethics

On admission to Mason, students agree to comply with the requirements of the Mason Honor System and Code\(^1\). The Honor Code will be strictly enforced in this course. Honor Code cases are heard by a panel consisting of students – students who meet the requirements are encouraged to nominate themselves to serve on the Honor Committee.

\(^1\) Available at http://catalog.gmu.edu/ and related Mason Web pages.
Any use of the words or ideas of another person(s), without explicit attribution that clearly identifies the material used and its source in an appropriate manner, is plagiarism and will not be tolerated. There is a "zero tolerance" policy for plagiarism within The Volgenau School. The Instructor reserves the right to use manual and/or automated means (including such services as Turnitin.com) to detect plagiarism in any work submitted by students for this course, and to direct Teaching Assistants and/or other faculty and/or staff members to do likewise in support of this course.

For this course, the following requirements are specified:

- All assessable work is to be prepared by the individual student, unless the Instructor explicitly directs otherwise.
- All work must be newly created by the individual student for this course for this semester. Any usage of work developed for another course, or for this course in a prior semester, is strictly prohibited without prior approval from the instructor.
- For team work a summary at the end of the submission must identify mutually agreed individual contributions.

Students may seek assistance with assigned work (and are encouraged to do so if they feel the need), provided:

- The directions for the assigned work do not prohibit such assistance.
- Such assistance is acknowledged in the submitted work, clearly identifying the person(s) giving assistance and the nature of the assistance given.
- Any work to be submitted is prepared entirely an exclusively by the student submitting it. Students are expressly prohibited from sharing any assessable work for this course in any manner with other students (except students assigned as Teaching Assistants or Undergraduate Peer Mentors to this course and the student's section), unless all students involved have had their work graded and returned by the Instructor, or the Instructor has explicitly approved such sharing.