Department of Information Sciences and Technology
Volgenau School of Engineering
IT 466 Foundations of Cryptography and Security
Spring 2020

Common Syllabus revised 1/16/2020

This syllabus contains information common to all sections of IT 466 for the Spring 2020 semester. Information specific to each section will be made available to registered students via the Blackboard course management system.

University Policies

The [University Catalog](#) is the central resource for university policies affecting student, faculty, and staff conduct in university affairs. Unless explicitly noted, any conflict between the policies in the University Catalog and the content of this document is unintentional. Please notify the author to resolve any such conflicts.

Please note that the Academic Year runs from the Fall semester of one calendar year through the Spring and Summer semesters of the following calendar year. Please be sure to select the correct archived Catalog if appropriate.

Scheduled Sections

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>Campus</th>
<th>Day</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL1</td>
<td>Prof. Lyons</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Access to Blackboard for each section will be made available no later than the day of the first class.
Course Description

From the University Catalog:

IT 466: Foundations of Cryptography and Security. 3 credits.

Detailed study of certain symmetric and asymmetric cryptographic schemes; analysis of network data (including "packet sniffing"); security at different network layers (including IPSec, SSL/TLS and Kerberos); and secure e-commerce. Teaches principles of designing and testing secure networks, including use of network partitioning, firewalls, intrusion detection systems, and vulnerability assessment tools. Offered by Info Sciences & Technology. Limited to two attempts.

Registration Restrictions:

Required Prerequisites: (IT 223\(^B\)) and (IT 341\(^C\)) and (IT 206\(^C\), 209\(^C\), or CS 211\(^C\)) and (IT 102\(^C\), MATH 112\(^C\) or 125\(^C\)).

\(^B\) Requires minimum grade of B.
\(^C\) Requires minimum grade of C.

Enrollment is limited to students with a major, minor, or concentration in Applied Information Technology, Applied Science, Individualized Study, Information Technology or Infmtn Tchngy Entrepreneurship.

Students with the terminated from VSE major attribute may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale.

Prerequisites

The required grades must be achieved in each prerequisite course **before** a student is qualified to take this course. The prerequisite courses must be completed prior to, not concurrently with, this course.

This requirement will be **strictly enforced**. Any student enrolled in the course who has not met the prerequisite requirements (or received a waiver) by the start of the semester will be dropped from the course and the student will be responsible for any consequences of being dropped.
Rationale

Network-enabled information systems have become an essential part of daily life. Most systems utilize the Internet as the network backbone, which presents security concerns since the Internet essentially has no security. This course builds on the content of IT 366 Network Security and examines in detail the design, implementation, operation and support of information security technologies applicable to networked environments.

Supported Student Outcomes at the Program Level

This course supports the following student outcomes of the IT major:

1. The ability to analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
2. The ability to design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
6. The ability to identify and analyze user needs and to take them into account in the selection, creation, integration, evaluation, and administration of computing-based systems.

Objectives

On successful completion of this course, students will be able to:

- Describe the mathematical foundations of modern cryptographic algorithms.
- Describe selected cryptographic algorithms and their use in network-enabled applications.
- Describe and give examples of modern technologies for information security in networked environments.

Course Applicability

IT 466 is an option in the Cyber Security (CYBR) concentration of the Bachelor of Science in Information Technology, and an option in the Defense Information Systems Technology (DIST) concentration of the Bachelor of Applied Science, and a Technical Focus Course in the Information Technology Minor and the Information Technology Undergraduate Certificate.
Faculty and Staff

Course Coordinator:
Prof. Lyons

Instructors:
See Scheduled Sections above.
See links to faculty home pages for information on office hours, contact preferences, etc.

Teaching Assistants:
To be assigned – see Blackboard

Administrative support:
Department of Information Sciences and Technology
Fairfax campus
5400 Nguyen Engineering Building
Email: bsit@gmu.edu
Phone: 703-993-3565
References

Textbooks

There is one required textbook for this course:

<table>
<thead>
<tr>
<th>Cryptography and Network Security: Principles and Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>8th edition</td>
</tr>
<tr>
<td>William Stallings</td>
</tr>
<tr>
<td>© 2020; Pearson Education, Inc.</td>
</tr>
</tbody>
</table>

Note: There are significant differences between the editions of this textbook. Please ensure that you obtain the edition described above.

See the publisher's Web page for rental and purchase options.

This textbook is available at a significant discount through the author's Web page.

Grading

Grades will be awarded in accordance with the Mason Grading System for undergraduate students. See AP.3.1 Undergraduate Grading for more information.

The grading scale for this course is:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>97 – 100%</td>
<td>Passing</td>
</tr>
<tr>
<td>A</td>
<td>93 – 96%</td>
<td>Passing</td>
</tr>
<tr>
<td>A-</td>
<td>90 – 92%</td>
<td>Passing</td>
</tr>
<tr>
<td>B+</td>
<td>87 – 89%</td>
<td>Passing</td>
</tr>
<tr>
<td>B</td>
<td>83 – 86%</td>
<td>Passing</td>
</tr>
<tr>
<td>B-</td>
<td>80 – 82%</td>
<td>Passing</td>
</tr>
<tr>
<td>C+</td>
<td>77 – 79%</td>
<td>Passing</td>
</tr>
<tr>
<td>C</td>
<td>73 – 76%</td>
<td>Passing</td>
</tr>
<tr>
<td>C-</td>
<td>70 – 72%</td>
<td>Passing*</td>
</tr>
<tr>
<td>D</td>
<td>60 – 69%</td>
<td>Passing*</td>
</tr>
<tr>
<td>F</td>
<td>0 – 59%</td>
<td>Failing</td>
</tr>
</tbody>
</table>
* Grades of "C-" and "D" are considered passing grades for undergraduate courses, but those grades may not be applicable as prerequisite grades or towards graduation, depending on the program and the Catalog Year. See the University Catalog for more information.

Raw scores may be adjusted by the Instructor to calculate final grades.

Final grades will be determined based on the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture reviews</td>
<td>10%</td>
</tr>
<tr>
<td>Homework</td>
<td>30%</td>
</tr>
<tr>
<td>Mid-term exam</td>
<td>30%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
</tbody>
</table>

These components are outlined in the following sections.

Lecture reviews

Students will submit online responses as directed to show their comprehension of lecture content.

Homework

Homework will be assigned several times during the semester. Each assignment will count towards the final grade - there are no "optional" assignments. Each homework assignment is to be prepared and submitted by the individual student as specified by the Instructor.

Mid-term exam

Students are required to attend an exam session (to be scheduled and announced in Blackboard) in person, or to arrange for a proctored exam.

The mid-term exam will be based on topics addressed in Lectures 1-5, and will be “closed book” - no reference materials other than those provided with the exam paper will be permitted. Mid-term exams will be returned to students.

Final exam

Students are required to attend an exam session (to be scheduled and announced in Blackboard) in person, or to arrange for a proctored exam.

The final exam will be based on topics addressed throughout the entire course and will be “closed book” - no reference materials other than those provided with the exam paper will be permitted. Final exams will be retained by the Department of Information Sciences and Technology and will not be returned to students.

There are **no** opportunities for "extra credit" in this course.
All students will be given the same opportunities to complete assigned work.
Please note that exams may be re-scheduled to compensate for disruptions in the semester schedule and students are required to be available throughout the exam period including the scheduled Make-up Day.

Students are expected to submit work as scheduled by the Instructor. Any assignment submitted after the due date-time but within 24 hours of it will be graded with a penalty of 25% of the available credit. Any assignment submitted more than 24 hours late will not be graded. Exceptions to the submission time requirement may be made at the sole discretion of the Instructor.

Any student with an unexcused absence (including absence from part of a classroom session due to late arrival or early departure) will receive no credit for any assessment activity missed during that absence. A student arriving after an assessment activity has begun will not receive additional time to complete the activity, unless the late arrival is excused by the Instructor.

A student with an exam conflict (or other circumstance that would justify rescheduling an exam under Mason policy), must notify the Instructor no later than 2 weeks prior to the scheduled exam. A student in an online section who wishes to take a proctored exam at another location must notify the Instructor no later than 3 weeks prior to the scheduled exam and the student will be responsible for making appropriate arrangements in accordance with Mason Policy 3004.

Any student arriving more than 15 minutes late for an exam may be prohibited from taking the exam at the sole discretion of the Instructor.

Each student is required to present a current Mason ID prior to beginning an in-person assessment. No other form of identification is accepted. See the Your Mason ID Web page for information on obtaining a Mason ID.

Mid-term and final grades will be posted to PatriotWeb, which is the only mechanism for students to obtain those grades. A student with a "hold" on his/her PatriotWeb account will be unable to access grades until the hold has been removed.

Schedule

This schedule is subject to revision before and throughout the course. Registered students should see Blackboard for the latest class schedule.

Important Dates

Please see the Spring 2020 Academic Calendar for important dates, including the last days to add and drop courses.

Religious Holidays

A list of religious holidays is published by University Life. Any student whose religious observance will conflict with a scheduled course activity must notify the Instructor at least 2 weeks in advance in order to make alternative arrangements.
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Content</th>
<th>Reading*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introductions; Logistics; Course Overview Information security services Randomness</td>
<td>Chapters 0, 1 Chapter 8</td>
</tr>
<tr>
<td>2</td>
<td>Number theory</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>3</td>
<td>Abstract algebra</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>4</td>
<td>Polynomial arithmetic</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>5</td>
<td>Cryptographic functions</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>6</td>
<td>Review for mid-term exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid-term exam</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Symmetric block ciphers</td>
<td>Chapters 3, 5, 6, 7</td>
</tr>
<tr>
<td>8</td>
<td>Asymmetric ciphers</td>
<td>Chapter 9, Section 10.2</td>
</tr>
<tr>
<td>9</td>
<td>Key management</td>
<td>Section 10.1, Chapter 14</td>
</tr>
<tr>
<td>10</td>
<td>Hash functions</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>11</td>
<td>Message authentication code (MAC) functions</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>12</td>
<td>Digital signatures</td>
<td>Chapter 13</td>
</tr>
<tr>
<td>13</td>
<td>Emerging technologies</td>
<td>to be advised</td>
</tr>
<tr>
<td>14</td>
<td>Review for final exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final exam</td>
<td></td>
</tr>
</tbody>
</table>

* From the textbook

The reading assignment shown for each lecture is to be completed *prior to* that lecture.
Attendance Policy

Students are expected to attend every class, to complete any required preparatory work (including assigned reading – see Schedule above) and to participate actively in lectures, discussions and exercises. As members of the academic community, all students are expected to contribute regardless of their proficiency with the subject matter.

Students are expected to make prior arrangements with Instructor if they know in advance that they will miss any class and to consult with the Instructor as soon as possible if they miss any class without prior notice. Any student who expects to miss more than one class session is strongly advised to drop the course and take it in a later semester when he/she can attend every class.

Mason policy AP.3.10 requires students to take exams at the scheduled time and place, unless prior approval is granted by the student's academic dean or director. An unexcused absence from an exam will result in a score of zero (0) for that exam. Please note that exams may be re-scheduled by the Registrar to compensate for disruptions in the semester schedule and students are required to be available throughout the exam period including the scheduled Make-up Day.

Campus Notifications

Students are encouraged to subscribe to the Mason Alert system to receive notifications of campus emergencies, closings, and other situations that could affect class activities.

Each classroom has a poster explaining actions to be taken in different types of crisis. Further information on emergency procedures is available at the Emergency Management Web site. In the event of a possible emergency, students are encouraged to dial 911.

Classroom conduct

Students are expected to conduct themselves in a manner that is conducive to learning, as directed by the Instructor. Any student who negatively impacts the opportunity for other students to learn may be asked to leave the classroom.

Electronic devices are potential distractions in the classroom environment. All electronic devices must be turned off or set to "silent" mode at all times unless the Instructor directs otherwise. In order to maximize student engagement the Instructor may prohibit use of such devices.

Unless explicitly approved in advance by the Instructor, photography, audio recording, and video recording are not permitted in the classroom.
Communications

Registered students will be given access to a Blackboard section for this course. Blackboard will be used as the primary mechanism (outside of lectures) to disseminate course information, including announcements, lecture slides, homework and other assignments, and scores for homework and exams. Some announcements may be sent via Blackboard to students’ Mason email accounts.

Communication with the Instructor on issues relating to the individual student only should be conducted using Mason email, via telephone, or in person - not in the public "Discussions" forums on Blackboard. To protect student privacy any communication related in any way to a student's status must be conducted using secure Mason systems – if you use email to communicate with the Instructor you MUST send messages from your Mason email account. Students must activate and monitor their Mason email accounts to receive important information from the University, including messages related to this class. Students are advised to use Blackboard, Tools, Send Email, Select Users to originate email messages to an Instructor.

Lecture slides are complements to the lecture process, not substitutes for it - access to lecture slides will be provided in Blackboard as a courtesy to students provided acceptable attendance is maintained.

All course materials (lecture slides, assignment specifications, etc) are published on Blackboard in Adobe® Portable Document Format (PDF). This allows users of most computing platforms to view and print these files. Microsoft® Word (or a compatible word processing application) is required for preparing assignments – it is available on computers in the Mason open labs.

Online sections will use several tools through Blackboard. Students are responsible for obtaining Internet access and a compatible platform. Appropriate computers are available on campus in open labs.

Privacy

Instructors respect and protect the privacy of information related to individual students. For information on student rights and privacy under the Family Educational Rights and Privacy Act of 1974 (FERPA) please see FERPA at Mason.

As described above, issues relating to an individual student will be discussed via email, telephone or in person. Instructors will not disclose protected information identifiable to an individual student with other students (or anyone without a need to know) without prior permission of the student.

Homework, quizzes, mid-term exams and other assessable work will be returned to each individual student directly by the Instructor (or by a faculty member, staff member, or Teaching Assistant designated by the Instructor, or via another secure method). Under no circumstances will a student's graded work be returned to another student.

Instructors, Teaching Assistants, and staff will take care to protect the privacy of each student's scores and grades.
Academic Integrity

All members of the Mason community are expected to uphold the principles of scholarly ethics.

The IT major has been designed to achieve several specific outcomes. One of those outcomes is: “An understanding of professional, ethical, legal, security, and social issues and responsibilities.”

Graduating students are bound by the ethical requirements of the professional communities they join. The ethics requirements for some of the communities relevant to IT graduates are available via the following links:

- ACM Code of Ethics and Professional Conduct
- IEEE Code of Ethics
- EC-Council Code of Ethics

On admission to Mason, students agree to comply with the requirements of the Mason Honor Code and System. The Honor Code will be strictly enforced in this course. Honor Code cases are heard by a panel of students – students who meet the requirements are encouraged to nominate themselves to serve on the Honor Committee.

Any use of the words or ideas of another person(s), without explicit attribution that clearly identifies the material used and its source in an appropriate manner, is plagiarism and will not be tolerated. The Instructor reserves the right to use manual and/or automated means (including such services as SafeAssign) to detect plagiarism in any work submitted by students for this course, and to direct Teaching Assistants and/or other faculty and/or staff members to do likewise in support of this course.

For this course, the following requirements are specified:

- All assessable work is to be prepared by the individual student, unless the Instructor explicitly directs otherwise.

- All work must be newly created by the individual student for this course for this semester. Any usage of work developed for another course, or for this course in a prior semester, is strictly prohibited without prior approval from the Instructor.

Students may seek assistance with assigned work (and are encouraged to do so if they feel the need), provided:

- The directions for the assigned work do not prohibit such assistance.

- Such assistance is explicitly acknowledged in the submitted work, clearly identifying the person(s) giving assistance and the nature of the assistance given.

- Any individual work to be submitted is prepared entirely and exclusively by the student submitting it. Students are expressly prohibited from sharing any individual assessable work for this course in any manner with other students (except students assigned as Teaching Assistants or Undergraduate Peer Mentors to this course and the student's section), unless all students involved have had their work graded and returned by the Instructor, or the Instructor has explicitly approved such sharing.
Another aspect of academic integrity is the free exchange of ideas. Vigorous discussion and debate are encouraged in this course, with the firm expectation that all aspects of the class will be conducted with civility and respect for differing ideas, perspectives, and traditions. When using online tools to communicate, students are expected to follow the conventions of Netiquette. Mason values diversity: through the Office of Diversity, Inclusion, and Multicultural Education (ODIME), Mason seeks to create and sustain inclusive learning environments where all are welcomed, valued, and supported.

Students are encouraged to ask for clarification of any issues related to academic integrity and to seek guidance from the Instructor, other faculty members, academic advisors, or the Office for Academic Integrity.

Disability Accommodations

Disability Services works with disabled students to arrange for appropriate accommodations to ensure equal access to university services. Any student with a disability of any kind is strongly encouraged to register with Disability Services as soon as possible and take advantage of the services offered.

Accommodations for disabled students **must** be made in advance – Disability Services cannot assist students retroactively. Any student who needs accommodation should contact the Instructor no later than the first class.

If a student has an accommodation that allows the student to take an exam in the Disability Services Testing Center, the Instructor will determine the date and time of that exam – the student **must not** contact Disability Services to schedule the exam until the Instructor has advised the date and time.

Other Resources

Mason provides many useful resources for students – see Students - George Mason University. The following resources may be particularly useful:

- The Writing Center
- The Academic Advising Center
- The University Libraries
- Counseling and Psychological Services
- University Career Services

Students in online sections may benefit from these resources:

- **Online Learning Resources**
- **University Libraries - Mason Online**